q-deformation of corner vertex operator algebras by Miura transformation

نویسندگان

چکیده

A bstract Recently, Gaiotto and Rapcak proposed a generalization of W N algebra by considering the symmetry at corner brane intersection (corner vertex operator algebra). The algebra, denoted as Y L,M,N , is characterized three non-negative integers L, M, . It has manifest triality automorphism which interchanges can be obtained reduction 1+∞ with “pit” in plane partition representation. Later, Prochazka representation terms L + M free bosons Miura transformation, where they use fractional power differential operators. In this paper, we derive q -deformation transformation. gives field for -deformed quantum toroidal algebra. We find that version “simpler” structure than original one because Miki duality For instance, direct correspondence between operators transformation those Furthermore, show both algebras share same screening

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras

If a vertex operator algebra V = ⊕n=0Vn satisfies dimV0 = 1, V1 = 0, then V2 has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set Symd(C) of symmetric matrices of degree d becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, cen...

متن کامل

Vertex Operator Algebras And

Let V be a vertex operator algebra. We construct a sequence of associative algebras A n (V) (n = 0; 1; 2; :::) such that A n (V) is a quotient of A n+1 (V) and a pair of functors between the category of A n (V)-modules which are not A n?1 (V)-modules and the category of admissible V-modules. These functors exhibit a bijection between the simple modules in each category. We also show that V is r...

متن کامل

To Vertex Operator Algebras

In this exposition, we continue the discussions of Dong [D2] and Li [L]. We shall prove an S3-symmetry of the Jacobi identity, construct the contragredient module for a module for a vertex operator algebra and apply these to the construction of the vertex operator map for the moonshine module. We shall introduce the notions of intertwining operator, fusion rule and Verlinde algebra. We shall al...

متن کامل

Constructions of Vertex Operator Coalgebras via Vertex Operator Algebras

The notion of vertex operator coalgebra is presented which corresponds to the family of correlation functions modeling one string propagating in space-time splitting into n strings in conformal field theory. This notion is in some sense dual to the notion of vertex operator algebra. We prove that any vertex operator algebra equipped with a non-degenerate, Virasoro preserving, bilinear form give...

متن کامل

Representations of vertex operator algebras

This paper is an exposition of the representation theory of vertex operator algebras in terms of associative algebras An(V ) and their bimodules. A new result on the rationality is given. That is, a simple vertex operator algebra V is rational if and only if its Zhu algebra A(V ) is a semisimple associative algebra. 2000MSC:17B69

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2021

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep04(2021)202